JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches.

Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The physiopathological consequences of frataxin deficiency are a severe disruption of iron-sulfur cluster biosynthesis, mitochondrial iron overload coupled to cellular iron dysregulation and an increased sensitivity to oxidative stress. Frataxin is a highly conserved protein, which has been suggested to participate in a variety of different roles associated with cellular iron homeostasis. The present review discusses recent advances that have made crucial contributions in understanding the molecular mechanisms underlying FRDA and in advancements toward potential novel therapeutic approaches. Owing to space constraints, this review will focus on the most commonly accepted and solid molecular and biochemical studies concerning the function of frataxin and the physiopathology of the disease. We invite the reader to read the following reviews to have a more exhaustive overview of the field [Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol., 256 (Suppl. 1), 9-17; Gottesfeld, J.M. (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol. Ther., 116, 236-248; Pandolfo, M. (2008) Drug insight: antioxidant therapy in inherited ataxias. Nat. Clin. Pract. Neurol., 4, 86-96; Puccio, H. (2009) Multicellular models of Friedreich ataxia. J. Neurol., 256 (Suppl. 1), 18-24].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app