Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice.

Medical Mycology 2010 December
Fungal exposure may elicit a number of pulmonary diseases in man, including allergic asthma. Fungal sensitization is linked to asthma severity, although the basis for this increased pathology remains ambiguous. To create conditions simulating environmental fungal allergen exposure in a human, nose-only inhalation delivery of Aspergillus fumigatus conidia was employed in mice previously sensitized to Aspergillus antigen extract. BALB/c mice were immunized with subcutaneous and intraperitoneal injections of soluble A. fumigatus extract in alum, which was followed by three intranasal inoculations of the same fungal antigens dissolved in saline to elicit global sensitization in a manner similar to other published models. The animals were then challenged with a 10-min inhaled dose of live conidia blown directly from the surface of a mature A. fumigatus culture. After a single challenge with inhaled A. fumigatus conidia, allergic pulmonary inflammation and airway hyperresponsiveness were significantly increased above that of either naïve animals or animals that had been sensitized to A. fumigatus antigens but not challenged with conidia. The architecture of the lung was changed by inhalation of conidia when compared to controls in that there were significant increases in epithelial thickness, goblet cell metaplasia, and peribronchial collagen deposition. Additionally, α-smooth muscle actin staining of histological sections showed visual evidence of increased peribronchial smooth muscle mass after fungal challenge. In summary, the delivery of live A. fumigatus conidia to the sensitized airways of BALB/c mice advances the study of the pulmonary response to fungi by providing a more natural route of exposure and, for the first time, demonstrates the consistent development of fibrosis and smooth muscle changes accompanying exposure to inhaled fungal conidia in a mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app