Journal Article
Review
Add like
Add dislike
Add to saved papers

A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling.

Together with anandamide, 2-arachidonoylglycerol (2-AG) constitutes one of the main representatives of a family of endogenous lipids known as endocannabinoids. These act by binding to CB(1) and CB(2) cannabinoid receptors, the molecular target of the psychoactive compound Delta(9)-THC, both in the periphery and in the central nervous system, where they behave as retrograde messengers to modulate synaptic transmission. These last years, evidence has accumulated to demonstrate the lead role played by the monoacylglycerol lipase (MAGL) in the regulation of 2-arachidonoylglycerol (2-AG) levels. Considering the numerous physiological functions played by this endocannabinoid, MAGL is now considered a promising target for therapeutics, as inhibitors of this enzyme could reveal useful for the treatment of pain and inflammatory disorders, as well as in cancer research, among others. Here we review the milestones that punctuated MAGL history, from its discovery to recent advances in the field of inhibitors development. An emphasis is given on the recent elucidation of the tridimensional structure of the enzyme, which could offer new opportunities for rational drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app