JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced creatine kinase B activity in multiple sclerosis normal appearing white matter.

BACKGROUND: Two studies using (31)P-magnetic resonance spectroscopy (MRS) reported enhanced phosphocreatine (PCr) levels in normal appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but this finding could not be properly explained.

METHODOLOGY/PRINCIPAL FINDINGS: We performed (31)P-MRS and (1)H-MRS in the NAWM in 36 subjects, including 17 with progressive MS, 9 with benign MS, and 10 healthy controls. Compared to controls, PCr/beta-ATP and PCr/total (31)P ratios were significantly increased in subjects with progressive MS, but not with benign MS. There was no correlation between PCr ratios and the N-acetylaspartate/creatine ratio, suggesting that elevated PCr levels in NAWM were not secondary to axonal loss. In the central nervous system, PCr is degraded by creatine kinase B (CK-B), which in the white matter is confined to astrocytes. In homogenates of NAWM from 10 subjects with progressive MS and 10 controls without central nervous system disease, we measured CK-B levels with an ELISA, and measured its activity with an enzymatic assay kit. Compared to controls, both CK-B levels and activity were decreased in subjects with MS (22.41 versus 46.28 microg/ml; p = 0.0007, and 2.89 versus 7.76 U/l; p<0.0001).

CONCLUSIONS/SIGNIFICANCE: Our results suggest that PCr metabolism in the NAWM in MS is impaired due to decreased CK-B levels. Our findings raise the possibility that a defective PCr metabolism in astrocytes might contribute to the degeneration of oligodendrocytes and axons in MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app