Add like
Add dislike
Add to saved papers

The knee kinematic pattern associated with disruption of the knee extensor mechanism in ambulant patients with diplegic cerebral palsy.

Failure of the knee extensor mechanism is a potentially disastrous complication of diplegic cerebral palsy and if left undiagnosed may lead to a cessation of independent walking. The disruption of the extensor mechanism usually occurs through or distal to the patella. The aim of this article is to describe the knee kinematic pattern associated with such knee pathology. We also present a mathematical model of knee crouch that leads to this problem. In a retrospective review of patients with radiographically proven disruption, we compared the postfailure clinical and kinematic data to premorbid data. All patients included in this study had attended our clinical Gait Analysis Laboratory on two occasions. In the patients with disruption of the extensor mechanism, the kinematic pattern changed from crouch with shock absorption to one of increased crouch and loss of shock absorption. Clinical characteristics included knee flexion contracture and increased hamstring tightness. We demonstrate how the prefailure crouch position of the knee increases the flexor moment arm about the knee. We suggest that this knee crouch position during walking is the primary cause of pathology. Failure of the knee extensor mechanism is associated with a distinctive knee kinematic pattern. Regular gait analysis can help identify this pathology and enable treatment to be planned accordingly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app