Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Stress failure in pulmonary capillaries.

In the mammalian lung, alveolar gas and blood are separated by an extremely thin membrane, despite the fact that mechanical failure could be catastrophic for gas exchange. We raised the pulmonary capillary pressure in anesthetized rabbits until stress failure occurred. At capillary transmural pressures greater than or equal to 40 mmHg, disruption of the capillary endothelium and alveolar epithelium was seen in some locations. The three principal forces acting on the capillary wall were analyzed. 1) Circumferential wall tension caused by the transmural pressure. This is approximately 25 dyn/cm (25 mN/m) at failure where the radius of curvature of the capillary is 5 microns. This tension is small, being comparable with the tension in the alveolar wall associated with lung elastic recoil. 2) Surface tension of the alveolar lining layer. This contributes support to the capillaries that bulge into the alveolar spaces at these high pressures. When protein leakage into the alveolar spaces occurs because of stress failure, the increase in surface tension caused by surfactant inhibition could be a powerful force preventing further failure. 3) Tension of the tissue elements in the alveolar wall associated with lung inflation. This may be negligible at normal lung volumes but considerable at high volumes. Whereas circumferential wall tension is low, capillary wall stress at failure is very high at approximately 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2) where the thickness is only 0.3 microns. This is approximately the same as the wall stress of the normal aorta, which is predominantly composed of collagen and elastin. The strength of the thin part of the capillary wall is probably attributable to the collagen IV of the basement membranes. The safety factor is apparently small when the capillary pressure is raised during heavy exercise. Stress failure causes increased permeability with protein leakage, or frank hemorrhage, and probably has a role in several types of lung disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app