Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

TRE17/ubiquitin-specific protease 6 (USP6) oncogene translocated in aneurysmal bone cyst blocks osteoblastic maturation via an autocrine mechanism involving bone morphogenetic protein dysregulation.

Aneurysmal bone cyst (ABC) is a pediatric osseous tumor characterized by extensive destruction of the surrounding bone. The molecular mechanisms underlying its pathogenesis are completely unknown. Recent work showed that translocation of the TRE17/USP6 locus occurs in over 60% of ABC cases resulting in TRE17 overexpression. Immature osteoblasts are presumed to be the cell type harboring translocation of TRE17 in at least a subset of ABCs. However, the effects of TRE17 overexpression on transformation and osteoblast function are unknown. TRE17 encodes a ubiquitin-specific protease (USP) and a TBC (TRE2-Bub2-Cdc16) domain that promotes activation of the Arf6 GTPase. Here we report that TRE17 potently inhibits the maturation of MC3T3 pre-osteoblasts in a USP-dependent and Arf6-independent manner. Notably, we find that TRE17 function is mediated through an autocrine mechanism. Transcriptome analysis of TRE17-expressing cells reveals dysregulation of several pathways with established roles in osteoblast maturation. In particular, signaling through the bone morphogenetic protein (BMP) pathway, a key regulator of osteogenesis, is profoundly altered. TRE17 simultaneously inhibits the expression of BMP-4 while augmenting the BMP antagonist, Gremlin-1. Osteoblastic maturation is restored in TRE17-expressing cells by the addition of exogenous BMP-4, thus establishing a functional role for BMP-4 during TRE17-induced transformation. Because bone homeostasis involves a precise balance between the activities of osteoblasts and osteoclasts, our studies raise the possibility that attenuated osteoblast maturation caused by TRE17 overexpression may contribute to the bone loss/destruction observed in ABC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app