Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects.

OBJECTIVE: Congenital heart defects represent the most common human birth defects. Even though the genetic cause of these syndromes has been linked to candidate genes, the underlying molecular mechanisms are still largely unknown. Disturbance of neural crest cell (NCC) migration into the derivatives of the pharyngeal arches and pouches can account for many of the developmental defects. The goal of this study was to investigate the function of microRNA (miRNA) in NCCs and the cardiovascular system.

METHODS AND RESULTS: We deleted Dicer from the NCC lineage and showed that Dicer conditional mutants exhibit severe defects in multiple craniofacial and cardiovascular structures, many of which are observed in human neuro-craniofacial-cardiac syndrome patients. We found that cranial NCCs require Dicer for their survival and that deletion of Dicer led to massive cell death and complete loss of NCC-derived craniofacial structures. In contrast, Dicer and miRNAs were not essential for the survival of cardiac NCCs. However, the migration and patterning of these cells were impaired in Dicer knockout mice, resulting in a spectrum of cardiovascular abnormalities, including type B interrupted aortic arch, double-outlet right ventricle, and ventricular septal defect. We showed that Dicer loss of function was, at least in part, mediated by miRNA-21 (miR-21) and miRNA-181a (miR-181a), which in turn repressed the protein level of Sprouty 2, an inhibitor of Erk1/2 signaling.

CONCLUSIONS: Our results uncovered a central role for Dicer and miRNAs in NCC survival, migration, and patterning in craniofacial and cardiovascular development which, when mutated, lead to congenital neuro-craniofacial-cardiac defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app