CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A Japanese trichothiodystrophy patient with XPD mutations.

Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by sulfur-deficient brittle hair complicated with ichthyosis, physical and mental retardation, and proneness to infections. Approximately half of TTD patients exhibit cutaneous photosensitivity because of the defect of nucleotide excision repair. Three genes, XPB, XPD and TTDA, have been identified as causative genes of photosensitive TTD. These three genes are components of basal transcription factor IIH. Most TTD cases have been reported in Europe and North America. We report a severely affected Japanese TTD patient with XPD mutations. Interestingly, his father has ichthyotic skin. The alteration in the paternal allele was a nucleotide substitution leading to Arg-722 to Trp (R722W), as previously reported in TTD patients. The other alteration in the maternal allele was a novel 3-bp deletion at nucleotides 67-69, resulting in the deletion of Ser-23, which is located upstream of helicase motif I and is the closest to the N-terminal end of XPD in reported mutations. The expression study showed that the two alterations were causative mutations for TTD. In Asia, it is likely that there are TTD patients who have not been diagnosed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app