JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Evidence for a genetic basis for altitude illness: 2010 update.

Altitude illness refers to a group of environmentally mediated pathophysiologies. Many people will suffer acute mountain sickness shortly after rapidly ascending to a moderately hypoxic environment, and an unfortunate few will develop potentially fatal conditions such as high altitude pulmonary edema or high altitude cerebral edema. Some individuals seem to be predisposed to developing altitude illness, suggesting an innate contribution to susceptibility. The implication that there are altitude-sensitive and altitude-tolerant individuals has stimulated much research into the contribution of a genetic background to the efficacy of altitude acclimatization. Although the effect of altitude attained and rate of ascent on the etiology of altitude illness is well known, there are only tantalizing, but rapidly accumulating, clues to the genes that may be involved. In 2006, we reviewed what was then known about the genetics of altitude illness. This article updates that review and attempts to tabulate all the available genetic data pertaining to these conditions. To date, 58 genes have been investigated for a role in altitude illness. Of these, 17 have shown some association with the susceptibility to, or the severity of, these conditions, although in many cases the effect size is small or variable. Caution is recommended when evaluating the genes for which no association was detected, because a number of the investigations reviewed in this article were insufficiently powered to detect small effects. No study has demonstrated a clear-cut altitude illness gene, but the accumulating data are consistent with a polygenic condition with a strong environmental component. The genes that have shown an association affect a variety of biological pathways, suggesting that either multiple systems are involved in altitude pathophysiology or that gene-gene interactions play a role. Although numerous studies have been performed to investigate specific genes, few have looked for evidence of heritability or familial transmission, or for epidemiological patterns that would be consistent with genetically influenced conditions. Future trends, such as genome-wide association studies and epigenetic analysis, should lead to enhanced understanding of the complex interactions within the genome and between the genome and hypoxic environments that contribute to an individual's capacity to acclimatize rapidly and effectively to altitude.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app