JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome.

Nucleus 2010 September
Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and "blinded" electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app