Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy.

BACKGROUND AND PURPOSE: Resection is considered as essential for the efficacy of modern adjuvant treatment of glioblastoma multiforme (GBM). Previous studies have indicated that amino acid PET is more specific than contrast enhancement on MRI for detecting residual tumor tissue after surgery. In a prospective study we investigated the prognostic impact of postoperative tumor volume and tumor/brain ratios (TBR) in PET using O-(2-[(18)F]fluoroethyl)-l-tyrosine (FET) in comparison with MRI.

MATERIALS AND METHODS: Forty-four patients with GBM were investigated by FET PET and MRI after surgery. Tumor volume in FET PET with a tumor/brain ratio (TBR)>1.6 and a TBR>2, mean and maximum TBR and gadolinium contrast-enhancement on MRI (Gd-volume) were determined. Thereafter patients received a fractionated radiotherapy with concomitant temozolomide (RCX). The median follow-up was 15.4 (3-35) months. The prognostic value of postoperative residual tumor volume in FET PET, TBR(mean,) TBR(max) and Gd-volume was evaluated using Kaplan-Maier estimates for disease-free survival (DFS) and overall survival (OS).

RESULTS: Postoperative tumor volume in FET PET had a significant independent influence on OS and DFS (OS 20.0 vs. 6.9 months; DFS 9.6 vs. 5.1 months, p<0.001; cut-off 25 ml). Similar results were observed when a TBR ≥ 2 (cut-off 10 ml) was used to define the tumor volume in (18)F-FET PET. The TBR(mean) and TBR(max) of FET uptake had a significant influence on DFS (p<0.05). Gd-volume in MRI had significant effect on OS and DFS in the univariate analysis. No independent significant influence in OS or DFS could be observed for Gd-volume in MRI.

CONCLUSIONS: Our data indicate that the tumor volume in FET PET after surgery of GBM has a strong prognostic impact for these patients. FET PET appears to be helpful to determine the residual tumor volume after surgery of GBM and may serve as a valuable tool for optimal planning of radiation treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app