COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human versus non-cross-linked porcine acellular dermal matrix used for ventral hernia repair: comparison of in vivo fibrovascular remodeling and mechanical repair strength.

BACKGROUND: Human acellular dermal matrix (HADM) and non-cross-linked porcine acellular dermal matrix (ncl-PADM) are clinically useful for complex ventral hernia repair. Direct comparisons between the two in vivo are lacking, however. This study compared clinically relevant early outcomes with these bioprosthetic materials when used for ventral hernia repair.

METHODS: Seventy-two guinea pigs underwent inlay repair of surgically created hernias with HADM (n = 37) or ncl-PADM (n = 35). Repair sites were harvested at 1, 2, or 4 weeks postoperatively. Adhesions were graded and quantified. Mechanical testing and histologic and immunohistologic (factor VIII) analyses of cellular and vascular infiltration were performed.

RESULTS: No infections or recurrent hernias occurred. No difference was observed in mean adhesion surface area or tenacity between groups. Mean cellular infiltration (p < 0.002, weeks 1 and 4; p < 0.006, week 2) and vascular infiltration (p < 0.0003, week 1; p < 0.0001, weeks 2 and 4) were greater in HADM. Ultimate tensile strength at the implant-musculofascia interface increased over time with both materials, but no difference was observed at 4 weeks. The mean ultimate tensile strength of explanted ncl-PADM itself was consistently greater than that of HADM. The elastic modulus (stiffness) did not differ between groups at the interface but was greater in explanted ncl-PADM (p < 0.0001, weeks 1 and 2; p < 0.02, week 4).

CONCLUSIONS: Both HADM and ncl-PADM become infiltrated with host cells and blood vessels within 4 weeks and have similar musculofascia-bioprosthetic interface strength. However, HADM has greater cellular and vascular infiltration. Longer-term studies will help determine whether later differences in material strength, stiffness, and remodeling affect hernia and/or bulge incidence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app