Journal Article
Review
Add like
Add dislike
Add to saved papers

The origins, specificity, and potential biological relevance of human anti-IgG hinge autoantibodies.

Human anti-IgG hinge (HAH) autoantibodies constitute a class of immunoglobulins that recognize cryptic epitopes in the hinge region of antibodies exposed after proteolytic cleavage, but do not bind to the intact IgG counterpart. Detailed molecular characterizations of HAH autoantibodies suggest that they are, in some cases, distinct from natural autoantibodies that arise independent of antigenic challenge. Multiple studies have attempted to define the specificity of HAH autoantibodies, which were originally detected as binding to fragments possessing C-terminal amino acid residues exposed in either the upper or lower hinge regions of IgGs. Numerous investigators have provided information on the isotype profiles of the HAH autoantibodies, as well as correlations among protease cleavage patterns and HAH autoantibody reactivity. Several biological functions have been attributed to HAH autoantibodies, ranging from house-cleaning functions to an immunosuppressive role to restoring function to cleaved IgGs. In this review, we discuss both the historic and current literature regarding HAH autoantibodies in terms of their origins, specificity, and proposed biological relevance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app