Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activity-dependent changes in impulse conduction of single human motor axons: a stimulated single fiber electromyography study.

OBJECTIVE: The aim of this study is to develop a novel method to assess activity-dependent hyperpolarization in human single motor axons at a constant stimulus frequency by using intra-muscular axonal stimulating single fiber electromyography (s-SFEMG).

METHODS: We performed s-SFEMG in the extensor digitorum communis (EDC) muscle of 10 normal subjects, and measured changes in latencies for single muscle fiber action potentials (MAPs) during 500 stimuli delivered at 5, 10 and 20 Hz. The data were analyzed with a repeated measurement analysis, and multiple comparisons were performed.

RESULTS: A total of 585 MAPs were examined at 5 Hz (n=190), 10 Hz (n=210), and 20 Hz (n=185) steady stimulation. There was a progressive linear prolongation of latencies, as the stimulus rate increased (F=95.6, p<0.001); the least square means (SEM) of latency change were 100.7 (0.28)% at 5 Hz, 102.3 (0.27)% at 10 Hz and 105.3 (0.28)% at 20 Hz. There were statistically significant differences between frequencies by Tukey-Kramer's method. Despite the significant latency prolongation, no activity-dependent conduction block developed. A 20 Hz electric stimulation to intramuscular axons was well-tolerated in all the subjects.

CONCLUSIONS: Tetanic stimulation at a constant rate results in significant latency increase in single human motor axons, the extent of which depends on the stimulus frequency. The findings imply that physiological discharge rates will activate the Na(+)/K(+) pump and thereby produce axonal hyperpolarization in single motor axons.

SIGNIFICANCE: This technique may detect activity-dependent conduction block if the safety margin of impulse transmission is significantly reduced by demyelination or increased branching due to collateral sprouting in a variety of neuromuscular disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app