Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Recurrence of posterior polymorphous corneal dystrophy is caused by the overgrowth of the original diseased host endothelium.

Posterior polymorphous corneal dystrophy (PPCD) is a rare, bilateral autosomal dominant disorder affecting primarily the corneal endothelium and descemet membrane (DM). The aim of this study was to establish the origin of abnormal endothelium in a patient with PPCD exhibiting cornea graft failure after keratoplasty surgery. A sex-mismatched graft obtained from a patient with PPCD who underwent repeat penetrating keratoplasty and the patient's original cornea were investigated. Combined fluorescent immunohistochemistry for cytokeratin (CK) 19 (a marker of aberrant PPCD endothelium) with fluorescence in situ hybridization (FISH) of the sex chromosomes were used in order to characterize the cells on the posterior graft surface. The pathological endothelium of the failed PPCD cornea revealed strong positivity for CK19 using fluorescent immunohistochemistry. In all the CK19-positive cells, both X and Y chromosomes were simultaneously detected using FISH. The results clearly showed the original cells of the patient (XY), within 3.5 years, almost totally overgrown the posterior corneal surface of the graft (XX). Moreover, an abnormal posterior collagenous layer populated by fibroblast-like cells was observed between DM and the endothelium in the failed graft, but its exact origin could not be established due to the low number of cells. Simultaneous detection of CK19 using fluorescent immunohistochemistry together with the detection of gonosomes using FISH was performed for the first time in the cornea and allowed us to prove that the recurrence of PPCD was caused by pathological abnormal proliferation and migration of recipient cells into donor graft.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app