EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multiplex 5' nuclease-quantitative PCR for diagnosis of relapsing fever in a large Tanzanian cohort.

Relapsing fever (RF) is caused by tick- and louse-borne Borrelia spp., is characterized by recurrent fever, and is often misdiagnosed as malaria. Because of submicroscopic bacteremia, microscopy can be insensitive between febrile bouts. We designed a multiplex quantitative PCR (qPCR) assay to distinguish RF Borrelia from Plasmodium falciparum and P. vivax. The assay specifically (100%) amplified pathogenic RF Borrelia (1 copy/reaction). We then tested blood from participants within a Tanzanian cohort assessed at scheduled intervals and with fever. Among 8,617 blood samples from 2,057 participants surveyed routinely, 7 (0.08%) samples and 7 (0.3%) participants had RF DNA (median, 4.4 × 10(3) copies/ml). Of 382 samples from 310 febrile persons, 15 (3.9%) samples from 13 (4.2%) participants had RF DNA (median, 7.9 × 10(2) copies/ml). Five (1.3%) samples from 4 (1.3%) participants were found to harbor Borrelia by microscopy. We conclude that multiplex qPCR holds promise for improved clinical diagnosis and epidemiologic assessment of RF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app