Add like
Add dislike
Add to saved papers

Genotypic characterization and in vitro activities of tigecycline and polymyxin B for members of the Enterobacteriaceae with decreased susceptibility to carbapenems.

Carbapenem resistance in members of the Enterobacteriaceae is increasing. To evaluate the effects of tigecycline and polymyxin B against carbapenem-non-susceptible pathogens, 89 representative clinical carbapenem-non-susceptible Enterobacteriaceae isolates were recovered from seven hospitals from four cities in China during 2006-2009: 30 Serratia marcescens, 35 Klebsiella pneumoniae, seven Enterobacter cloacae, six Enterobacter aerogenes, five Escherichia coli, four Citrobacter freundii and two Klebsiella oxytoca isolates. Twenty-eight S. marcescens isolates were indistinguishable. The 35 K. pneumoniae isolates belonged to 12 clonal strains. Among the 89 Enterobacteriaceae isolates, 82 produced KPC-2, seven produced IMP (three produced KPC-2 simultaneously), three did not produce any carbapenemases and nine were deficient in porins. Polymyxin B was much more active than tigecycline against carbapenem-non-susceptible Enterobacteriaceae. The MIC(50) and MIC(90) of imipenem, meropenem, ertapenem, polymyxin B and tigecycline were 8 and 32 µg ml(-1), 8 and 32 µg ml(-1), 16 and 128 µg ml(-1), 0.5 and 16 µg ml(-1), and 4 and 16 µg ml(-1), respectively. Rates of susceptibility to imipenem, meropenem, ertapenem and polymyxin B were 30.0%, 27.5%, 2.5% and 89.2% by CLSI criteria. The rate of susceptibility to tigecycline was 40% and 17.5% by Food and Drug Administration (MIC ≤2 µg ml(-1)) and European Committee on Antimicrobial Susceptibility Testing (MIC ≤1 µg ml(-1)) criteria, respectively. KPC-2- or IMP-producing E. coli transconjugants exhibited reduced susceptibility to carbapenems but were susceptible to polymyxin B and tigecycline with an MIC range of 0.5-2 µg ml(-1), 0.25-2 µg ml(-1), 0.5-4 µg ml(-1), 0.5 µg ml(-1) and 0.5-1 µg ml(-1). In conclusion, carbapenem resistance in Enterobacteriaceae is mainly due to production of KPC-2, and polymyxin B is active for the carbapenem-resistant Enterobacteriaceae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app