Add like
Add dislike
Add to saved papers

Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis.

Pathologie-biologie 2012 October
SETTING: Antituberculosis drug-induced hepatitis attributed to isoniazide (INH) is one of the most prevalent drug-induced liver injuries. INH is metabolized by hepatic N-acetyltransferase 2 (NAT2) to form hepatotoxins.

AIM: To evaluate whether polymorphism of the NAT2 gene was associated with antituberculosis drug-induced hepatotoxicity in Tunisian patients.

METHODS: A total of 66 patients with tuberculosis (TB) who received anti-TB treatment were followed prospectively. Their NAT2 genotype was determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We identified three single nucleotide polymorphisms (SNPs); 481C to T (NAT2*5B), 590G to A (NAT2*6A) and 857G to A (NAT2*7B). Univariate analysis and logistic regression analysis were used to evaluate the risk factors of isoniazid-induced hepatitis.

RESULTS: Fourteen patients (21.2%) were diagnosed with anti-TB drug-induced hepatitis. None of the rapid acetylators-type patients have expressed serum aminotransferase elevation. Among patients with hepatotoxicity, slow acetylators-type patients had a higher risk of hepatotoxicity than intermediate acetylators (21.4% vs. 78.6%, P=0.01). Statistical analysis revealed that the frequency of a variant diplotypes, NAT2*5B/5B and NAT2*6A/6A, were significantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity (P=0.01, odds ratio [OR]=7.6 and P=0.029, OR=15, respectively). By contrast, the frequency of the rapid acetylation NAT2*4 allele was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P=0.02, OR=0.18). Moreover, 590G/G genotype was associated with decreased hepatotoxicity (P=0.01); by contrast, homozygous point mutation at position 481 and 590 were associated with a higher risk of hepatotoxicity (P=0.01).

CONCLUSION: Our results suggest that the slow-acetylator status of NAT2 is risk factor for INH-induced hepatotoxicity. Moreover, diplotypes, NAT2*5B/5B, NAT2*6A/6A, 481T/T and 590A/A, are useful new biomarkers for predicting anti-TB drug-induced hepatotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app