JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration.

Cell/microcarrier combinations can be injected to repair tissue defects, but whether currently available microcarriers can be utilized to repair different tissue defects remains unknown. Here, we compared the suitability of fabricated micronized acellular dermal matrix (MADM), micronized small intestinal submucosa (MSIS), and gelatin microspheres as expansion and delivery scaffolds for adipose-derived mesenchymal stem cells (ADSCs). The results of MTS assay, scanning electron microscopy (SEM), and flow cytometry suggested that the three microcarriers all have good biocompatibility. Quantitative polymerase chain reaction revealed enhanced epidermal growth factor, vascular endothelial growth factor, basal fibroblast growth factor, and transforming growth factor-β expression levels after ADSCs had been cultured on MADM or MSIS for 5 days. After culturing ADSCs on microcarriers in osteogenic medium for 7 days, the expression levels of bone formation-related genes were enhanced. ADSC/microcarrier treatment accelerated wound closure. The ADSC/MADM and ADSC/MSIS combinations retained more of the original implant volume at 1 month postimplantation than ADSC/gelatin microspheres combination in soft-tissue augmentation studies. All implants displayed fibroblast and capillary vessel infiltrations; but ectopic bone formation did not occur, and the calvarial defect repair results were unfavorable. Our study demonstrates the potential utility of these microcarriers not only as a cell-culture substrate but also as a cell-transplantation vehicle for skin regeneration and soft-tissue reconstruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app