Add like
Add dislike
Add to saved papers

Dietary modifications alone do not improve bone mineral density in children with idiopathic hypercalciuria.

Clinical Nephrology 2011 November
Prior cross-sectional studies have demonstrated an association between hypercalciuria and low bone mineral density (BMD) in children and adults. However, the natural history of BMD in children with hypercalciuria and its response to therapy has not been evaluated. The objective of this retrospective study was to determine the change over time in lumbar (L1 - L4) BMD Z-score measured on sequential DXA scans in 19 children with hypercalciuria treated with dietary recommendations without (n = 12, Group A) and with citrate (n = 7, Group B). The mean lumbar bone density Z-score/year decreased in Group A (-0.11 ±/0.41) indicating that children with hypercalciuria lose L1 - L4 BMD over time. In contrast, the L1 - L4 BMD Zscore/ year increased in Group B (0.19 ± 0.38) suggesting that pharmacologic therapy may reverse this trend. Similarly 75% of patients in Group A, but only 29% patients in Group B had a decrease in L1 - L4 BMD. There was a definite, although not significant, trend towards improved mean bone mineral density Z-score per year and a lower percentage of patients with a decreased Z-score in hypercalciuric children treated with potassium citrate. Our findings suggest the possibility that dietary recommendations alone is not adequate as the bone mineral density of children with hypercalciuria will decrease over time, potentially increasing the risk for osteoporosis as an adult.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app