Add like
Add dislike
Add to saved papers

Oxidative and nitrative modifications of enkephalins by human neutrophils: effect of nitroenkephalin on leukocyte functional responses.

Amino Acids 2012 August
Neutrophils play a major role in acute inflammation by generating reactive oxygen/nitrogen species. Opioid peptides, including enkephalins, are present at inflammation sites. Neutrophils contribute to protect against inflammatory pain by releasing opioid peptides. In this investigation, the ability of human polymorphonuclear cells to induce oxidative and nitrative modifications of Leu-enkephalin has been investigated in vitro. Activated human neutrophils mediate the oxidation of Leu-enkephalin resulting in the production of dienkephalin. In the presence of nitrite at concentrations observed during inflammatory and infectious process (10-50 μM), nitroenkephalin, a nitrated derivative of Leu-enkephalin, is additionally formed. The yield of nitroenkephalin increases with nitrite concentration and is significantly inhibited by the addition of catalase or 4-aminobenzoic acid hydrazide (ABAH), a specific inhibitor of peroxidases. These results suggest that neutrophils induce nitration of Leu-enkephalin by a mechanism that is dependent on myeloperoxidase activity and hydrogen peroxide. Oxidative/nitrative modifications of Leu-enkephalin have been also evidenced when cells were treated with the NO-donor molecule, DEANO. The nitrated enkephalin has been examined for its effect on leukocyte functional responses. The data reveal that nitroenkephalin at micromolar concentrations inhibits superoxide anion generation and degranulation of azurophilic granules of human polymorphonuclear cells. Moreover, nitroenkephalin inhibits spontaneous apoptosis of neutrophils, as evaluated by measuring caspase-3 activity. Collectively, our data indicate that the nitrated enkephalin attenuates neutrophil activation and promotes the short-term survival of these cells, suggesting a possible role of the nitrocompound in the efficiency and resolution of inflammatory processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app