JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging Drosophila.

Genome Biology 2011 December 20
BACKGROUND: The BLM DNA helicase plays a vital role in maintaining genome stability. Mutations in BLM cause Bloom syndrome, a rare disorder associated with cancer predisposition and premature aging. Humans and mice with blm mutations have increased frequencies of spontaneous mutagenesis, but the molecular basis of this increase is not well understood. In addition, the effect of aging on spontaneous mutagenesis in blm mutants has not been characterized. To address this, we used a lacZ reporter system in wild-type and several mutant strains of Drosophila melanogaster to analyze mechanisms of mutagenesis throughout their lifespan.

RESULTS: Our data show that Drosophila lacking BLM have an elevated frequency of spontaneous genome rearrangements that increases with age. Although in normal flies most genome rearrangements occur through DNA ligase 4-dependent classical end joining, most rearrangements that accumulate during aging in blm mutants do not require DNA ligase 4, suggesting the influence of an alternative end-joining mechanism. Adult blm mutants also display reduced lifespan and ligase 4-independent enhanced tumorigenesis in mitotically active tissues.

CONCLUSIONS: These results suggest that Drosophila BLM suppresses error-prone alternative end-joining repair of DNA double-strand breaks that can result in genome instability and tumor formation during aging. In addition, since loss of BLM significantly affects lifespan and tumorigenesis, the data provide a link between error-prone end joining, genome rearrangements, and tumor formation in a model metazoan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app