Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist.

OBJECTIVE: The anatomic and physiologic constraints for pediatric cavopulmonary assist differ markedly from adult Fontan circulations owing to smaller vessel sizes and risk of elevated pulmonary resistance. In this study, hemodynamic and hemolysis performance of a catheter-based viscous impeller pump (VIP) to power the Fontan circulation is assessed at a pediatric scale (∼15 kg) and performance range (0-30 mm Hg).

METHODS: Computer simulation and mock circulation studies were conducted to assess the hydraulic performance, acute hemodynamic response to different levels VIP support, and the potential for vena caval collapse. Computational fluid dynamics simulations were used to estimate VIP hydraulic performance, shear rates, and potential for hemolysis. Hemolysis was quantified in a mock loop with fresh bovine blood.

RESULTS: A VIP augmented 4-way total cavopulmonary connection flow at pediatric scales and restored systemic pressures and flows to biventricular values, without causing flow obstruction or suction. VIP generated flows up to 4.1 L/min and pressure heads of up to 38 mm Hg at 11,000 rpm. Maximal shear rate was 160 Pa, predicting low hemolysis risk. Observed hemolysis was low with plasma free hemoglobin of 11.4 mg · dL(-1) · h(-1).

CONCLUSIONS: A VIP will augment Fontan cavopulmonary flow in the proper pressure and flow ranges, with low hemolysis risk under more stringent pediatric scale and physiology compared with adult scale. This technology may be developed to simultaneously reduce systemic venous pressure and improve cardiac output after stage 2 or 3 Fontan repair. It may serve to compress surgical staging, lessening the pathophysiologic burden of repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app