Add like
Add dislike
Add to saved papers

Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma.

PURPOSE: To analyze the axonal architecture of the optic nerve in patients with normal-pressure glaucoma and determine whether these parameters correlate with the disease severity.

METHODS:   Using magnetic resonance (MRI) imaging (1.5-Tesla unit) and diffusion tensor (DT) MRI, we measured the optic nerve diameter, optic chiasm height and lateral geniculate nucleus (LGN) volume in patients with normal-pressure glaucoma and an age-matched control group. The retinal nerve fibre layer thickness (RNFL) was determined by optical coherence tomography (OCT).

RESULTS:   The study included 30 patients with normal-pressure glaucoma and 30 age-matched control subjects. Optic nerve diameter (p < 0.001), optic chiasm height (p < 0.001) and LGN volume (p = 0.02) were significantly smaller in the glaucoma group than in the control group and were significantly correlated with RNFL thickness and perimetric loss. In the control group, the parameters significantly (p < 0.05) decreased with age. The DT-MRI-derived fractional anisotropy for the optic nerve was significantly lower (p < 0.001), and the DT-MRI-derived mean diffusivity (p < 0.001), radial diffusivity (λ(⊥) ; p < 0.001) and axial diffusivity (λ(||) ; p = 0.009) for the optic nerve were significantly higher in the glaucoma group and significantly correlated with RNFL thickness and mean perimetric defect.

CONCLUSIONS:   Patients with normal-pressure glaucoma show an age-adjusted reduced optic nerve diameter, optic chiasm height and LGN volume as measured by MRI, correlating with a reduced RNFL thickness and increased perimetric loss. MRI may be applied to examine the optic nerve in patients with glaucoma with opaque optic media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app