Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of Malassezia yeasts on serum Th1 and Th2 cytokines in patients with guttate psoriasis.

BACKGROUND: Systemic and focal infections caused by microorganisms have been known to induce or exacerbate psoriasis. Although the role of yeast species of the genus Malassezia in the pathogenesis of psoriasis is not fully understood, it is thought that these lipophilic yeasts may represent a triggering factor in the exacerbation of psoriatic lesions.

OBJECTIVES: This study investigated the effects of Malassezia yeasts on serum Th1 and Th2 cytokines in patients with guttate psoriasis (GP) in order to define their role in the pathogenesis of psoriasis.

METHODS: Fifty patients with GP and 29 clinically healthy individuals were included in the study. All samples consisted of scales and scrapings taken from the scalps, trunks, and upper limbs of both psoriasis patients and healthy subjects. Psoriasis patients and healthy subjects were grouped according to their positivity or negativity for Malassezia yeasts as ascertained by direct microscopy and/or culture. An enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of Th1 and Th2 cytokines in these groups.

RESULTS: No significant differences in positivity for Malassezia yeasts were found between psoriatic skin and healthy skin in samples taken from different body sites. Serum interleukin-13 (IL-13) levels were significantly lower in the psoriasis group compared with the control group (P = 0.04). Levels of other cytokines did not differ significantly between the psoriasis and control groups. Mean levels of Th2 cytokines (IL-4, IL-10, IL-13), but not of Th1 cytokines (IL-2 and IFN-γ), were significantly lower in psoriasis patients positive for Malassezia yeasts compared with those negative for Malassezia yeasts and control subjects (P = 0.04, P < 0.001 and P = 0.01, respectively).

CONCLUSIONS: The isolation of Malassezia yeasts from GP lesions does not necessarily mean that these species are pathogenic, but their downregulating effects on anti-inflammatory Th2 cytokines may contribute to the occurrence of GP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app