JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

JNK-dependent Stat3 phosphorylation contributes to Akt activation in response to arsenic exposure.

Environmental exposure to arsenic, especially the trivalent inorganic form (As(3+)), has been linked to human cancers in addition to a number of other diseases including skin lesions, cardiovascular disorders, neuropathy, and internal organ injury. In the present study, we describe a novel signaling axis of the c-Jun NH2 kinase (JNK) and signal transducer and activator of transcription 3 (Stat3) and its involvement in As(3+)-induced Akt activation in human bronchial epithelial cells. As(3+) activates JNK and induces phosphorylation of the Stat3 at serine 727 (S727) in a dose- and time-dependent manner, which occurred concomitantly with Akt activation. Disruption of the JNK signaling pathway by treatment with the JNK inhibitor SP600125, siRNA knockdown of JNK, or genetic deficiency of the JNK1 or JNK2 gene abrogated As(3+)-induced S727 phosphorylation of Stat3, Akt activation, and the consequent release of vascular endothelial growth factor (VEGF) and migration of the cells. Similarly, pretreatment of the cells with Stat3 inhibitor or Stat3 siRNA prevented Akt activation and VEGF release from the cells in response to As(3+) treatment. Taken together, these data revealed a new signaling mechanism that might be pivotal in As(3+)-induced malignant transformation of the cells by linking the key stress signaling pathway, JNK, to the activation of Stat3 and the carcinogenic kinase, Akt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app