Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stoichiometric identification with maximum likelihood principal component analysis.

This study presents an effective procedure for the determination of a biologically inspired, black-box model of cultures of microorganisms (including yeasts, bacteria, plant and animal cells) in bioreactors. This procedure is based on sets of experimental data measuring the time-evolution of a few extracellular species concentrations, and makes use of maximum likelihood principal component analysis to determine, independently of the kinetics, an appropriate number of macroscopic reactions and their stoichiometry. In addition, this paper provides a discussion of the geometric interpretation of a stoichiometric matrix and the potential equivalent reaction schemes. The procedure is carefully evaluated within the stoichiometric identification framework of the growth of the yeast Kluyveromyces marxianus on cheese whey. Using Monte Carlo studies, it is also compared with two other previously published approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app