Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A noninvasive multianalyte urine-based diagnostic assay for urothelial cancer of the bladder in the evaluation of hematuria.

OBJECTIVE: To test whether a noninvasive urine-based multianalyte diagnostic readout assay that uses protein and DNA biomarkers can risk stratify patients with hematuria into those who are or are not likely to have bladder cancer and those who should receive standard care.

PATIENTS AND METHODS: This prospective, observational, multicenter, single-assessment study was conducted between June 12, 2009, and April 15, 2011. Eligible patients presented with hematuria and as part of their evaluation underwent cystoscopy. Urine samples were analyzed for the presence of mutant FGFR3 and quantified matrix metalloproteinase 2 and the hypermethylation of TWIST1 and NID2. A patient's chance of having (positive predictive value [PPV]) or not having (negative predictive value [NPV]) cancer was determined by FGFR3 alone or by all 4 biomarkers, respectively.

RESULTS: Cystoscopy/biopsy diagnosed 690 of 748 patients as negative and 58 as positive for bladder cancer. Of 21 patients identified by FGFR3 as highly likely to have cancer, 20 were also positive by cystoscopy/biopsy, resulting in a PPV of 95.2% (20 of 21), with specificity of 99.9% (689 of 690). The 4-marker combination identified 395 patients as having a low likelihood of cancer. Of these, 56.2% (388 of 690) also had negative biopsy/cystoscopy findings, resulting in an NPV of 98.2% (388 of 395). In total, 416 of the 748 patients with hematuria (55.6%) were identified with extremely high NPV and PPV to have or not have bladder cancer.

CONCLUSION: This multianalyte assay accurately stratified patients with high confidence into those who likely do or do not have bladder cancer. This test was developed to enhance and not to eliminate referrals for urologic evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app