Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidative stress and apoptosis in homocystinuria patients with genetic remethylation defects.

Oxidative stress has been described as a putative disease mechanism in pathologies associated with an elevation of homocysteine. An increased reactive oxygen species (ROS) production and apoptosis rate have been associated with several disorders of cobalamin metabolism, particularly with methylmalonic aciduria (MMA) combined with homocystinuria cblC type. In this work, we have evaluated several parameters related to oxidative stress and apoptosis in fibroblasts from patients with homocystinuria due to defects in the MTR, MTRR, and MTHFR genes involved in the remethylation pathway of homocysteine. We have also evaluated these processes by knocking down the MTRR gene in cellular models, and complementation by transducing the wild-type gene in cblE mutant fibroblasts. All cell lines showed a significant increase in ROS content and in MnSOD expression level, and also a higher rate of apoptosis with similar levels to the ones in cblC fibroblasts. The amount of the active phosphorylated forms of p38 and JNK stress-kinases was also increased. ROS content and apoptosis rate increased in control fibroblasts and in a glioblastoma cell line by shRNA-mediated silencing of MTRR gene expression. In contrast, wild-type MTRR gene corrected mutant cell lines showed a decrease in ROS and apoptosis levels. To the best of our knowledge, this study provides the first evidence that an impaired remethylation capacity due to low MTRR and MTR activity might be partially responsible for stress response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app