EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enterocyte expression of epidermal growth factor receptor is not required for intestinal adaptation in response to massive small bowel resection.

PURPOSE: Intestinal adaptation after massive small bowel resection (SBR) permits improved absorption of enteral nutrition despite significant loss of bowel length. Epidermal growth factor (EGF) and its receptor (EGFR) have previously been established to play major roles in the pathogenesis of adaptation. This study tested the hypothesis that EGFR signaling within the epithelial cell compartment (enterocytes) is required for intestinal adaptation.

METHODS: We developed a tamoxifen-inducible Villin-Cre/LoxP recombinant system for enterocyte-directed EGFR deletion using EGFR-floxed mice. Epidermal growth factor receptor-null mice and wild-type littermates underwent either 50% proximal SBR or sham operation. Ileal tissue was harvested on postoperative day 7. To assess for adaptation, villus height and crypt depth as well as rates of crypt cell proliferation and apoptosis were measured.

RESULTS: Adaptation after SBR occurred normally, as demonstrated by significant increases in villus height, crypt depth, and crypt proliferative and apoptotic index in both the wild-type and EGFR-null mice.

CONCLUSION: Enterocyte EGFR expression is not required for the adaptation response to massive SBR. This novel finding suggests that enterocyte proliferation during adaptation is regulated by EGFR signaling in cells other than enterocytes, perhaps within the mesenchymal cell compartment of the bowel wall via factor(s) that are presently unknown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app