Add like
Add dislike
Add to saved papers

Utilisation of fluorescent multiplex PCR and laser-induced capillary electrophoresis for the diagnosis of Ewing family of tumours in formalin-fixed paraffin-embedded tissues.

AIMS: The localisation of the translocation breakpoint of the Ewing sarcoma family of tumours shows significant variability on relatively large regions of fusion partner genes. As a consequence, many alternative forms of EWSR1-ETS translocation exist which make the RNA-based molecular diagnostics of Ewing sarcoma family of tumours complicated. In addition to the heterogeneity of fusion transcripts, the degradation of RNA also presents a significant difficulty in the molecular analysis of formalin-fixed paraffin-embedded (FFPE) tissues. Our aim was to establish a sensitive method which is able to identify all combinatorially possible EWSR1-FLI1 and EWSR1-ERG translocation transcripts in FFPE tissue samples despite significant RNA-degradation.

METHODS: The combination of fluorescent multiplex PCR with laser-induced capillary electrophoresis was used to detect and identify EWSR1-FLI1 and EWSR1-ERG chimeric transcripts on the basis of amplicon size, and forward primers labelled by distinct fluorophores.

RESULTS: Using this method, we processed 60 FFPE samples of Ewing sarcoma family of tumours, and identified six types EWSR1-FLI1 and one type EWSR1-ERG chimeric transcripts acceptable for RT-PCR analysis in 27 out of 45 samples. This result shows 60% sensitivity for detecting the most frequent Ewing family of tumour (EFT)-related fusion transcripts.

CONCLUSIONS: The utilisation of fluorescent multiplex PCR and laser-induced fluorescent capillary electrophoresis is effective for the diagnosis of EFT in FFPE tissue, and after the defined modifications it can offer a sensitive method to overcome the diagnostic difficulties connected with heterogeneity of the variant translocations in EFT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app