JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Enzyme induction with antiepileptic drugs: cause for concern?

Epilepsia 2013 January
Several commonly prescribed antiepileptic drugs (AEDs)-including phenobarbital, phenytoin, and carbamazepine-stimulate the synthesis of a broad range of monooxygenase and conjugating enzymes. These agents are well known to reduce the duration and action of many lipid- and non-lipid-soluble drugs, including anticoagulants, cytotoxics, analgesics, antiretrovirals, glucocorticoids, statins, antihypertensives, oral contraceptives, psychoactive drugs, immunosuppressants, and of course, other AEDs. This process, therefore, may be associated with a number of clinical problems including higher cancer mortality, progressive AIDS, transplant rejection, and unwanted pregnancy. Withdrawal of enzyme-inducing AEDs will increase the concentration of induced drugs, bringing with it substantial risk of toxicity if doses are not concomitantly reduced. Yet the potential widespread adverse health consequences of these interactions, both with AED initiation and withdrawal, remain largely underappreciated. Furthermore, induction also affects enzymes involved in endogenous metabolic pathways, and can alter bone biochemistry, gonadal steroids, and lipid markers. Therefore, enzyme-inducing AEDs may contribute to the development of a number of comorbidities, including osteoporosis, sexual dysfunction, and vascular disease. This process continues as long as the patient takes the inducer. Modern AEDs that do not possess this property have similar efficacy for the common epilepsies. Accordingly, perhaps consideration should be given to starting treatment with, or even switching patients to, non-enzyme-inducing AEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app