JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differentiating diffuse World Health Organization grade II and IV astrocytomas with ex vivo magnetic resonance spectroscopy.

Neurosurgery 2013 Februrary
BACKGROUND: The prognosis and treatment of astrocytomas, which are primary brain tumors, vary depending on the grade of the tumor, necessitating a precise preoperative classification. Magnetic resonance spectroscopy (MRS) provides information about metabolites in tissues and is an emerging noninvasive tool to improve diagnostic accuracy in patients with intracranial neoplasia.

OBJECTIVE: To investigate whether ex vivo MRS could differentiate World Health Organization grade II (A-II) and IV astrocytomas (glioblastomas; GBM) and to correlate MR spectral profiles with clinical parameters.

METHODS: Patients with A-II and GBM (n = 58) scheduled for surgical resection were enrolled. Tumor specimens were collected during surgery and stored in liquid nitrogen before being analyzed with high-resolution magic angle spinning MRS. The tumors were histopathologically classified according to World Health Organization criteria as GBM (n = 48) and A-II (n = 10).

RESULTS: Multivariate analysis of ex vivo proton high-resolution magic angle spinning spectra MRS showed differences in the metabolic profiles of different grades of astrocytomas. A-II had higher levels of glycerophosphocholine and myo-inositol than GBM. The latter had more phosphocholine, glycine, and lipids. We observed a significant metabolic difference between recurrent and nonrecurrent GBM (P < .001). Primary GBM had more phosphocholine than recurrent GBM. A significant correlation (P < .001) between lipid and lactate signals and histologically estimated percentage of necrosis was observed in GBM. Spectral profiles were not correlated with age, survival, or magnetic resonance imaging-defined tumor volume.

CONCLUSION: Ex vivo MRS can differentiate astrocytomas based on their metabolic profiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app