JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of platelet gel-released supernatant on human fibroblasts.

In recent years, interest in the topical use of platelet gel (PG) to stimulate wound healing has rapidly extended into various clinical applications and specialized fields. Many recent in vitro and in vivo studies have attempted to explain the biological mechanisms involved in PG-induced tissue regeneration/reparation. However, it remains unclear which parameters should be used in clinical applications to obtain satisfactory results in the healing of wounds. Toward this end, the present study focused on understanding the relationship between platelet concentrations and the cellular parameters of the cell types, i.e., fibroblasts, involved in wound healing. Normal human dermal fibroblasts were treated with PG-released supernatant at various concentrations in different assays (proliferation, migration, invasion, and in vitro scratch wound closure) to identify the most effective concentration to promote the fibroblasts' activities. Different concentrations of platelets per microliter in PG have different levels of efficacy in inducing fibroblast activity. The most effective concentration was obtained from PG at a concentration of approximately 0.5-1.5 × 10(6)  plt/μL; higher concentrations were less effective. This study shows that excessively high concentrations of platelets per microliter have an inhibitory effect on the wound healing processes and are, therefore, counterproductive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app