Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography.

Abstract The pathophysiological changes in the pericontusional region after traumatic brain injury (TBI) have classically been considered to be ischemic. Using [F-18]fluorodeoxyglucose (FDG) and triple-oxygen PET studies, we examined the pericontusional "penumbra" to assess for increased oxygen extraction fraction (OEF), anaerobic metabolism, and tissue viability. Acute (≤4 days) CT, MRI, and PET studies were performed in eight patients with TBI who had contusions. Four regions-of-interest (ROI) containing the contusion core, pericontusional hypodense gray matter (GM), pericontusional normal-appearing GM, and remote normal-appearing GM, were defined using a semi-automatic method. The correlations of cerebral blood flow (CBF) with OEF, cerebral metabolic rate of oxygen (CMRO2), and cerebral metabolic rate of glucose (CMRglc) were examined. The oxygen-glucose ratio (OGR) in each brain region was evaluated for anaerobic metabolism. The results show that pericontusional tissue had progressively diminishing OEF, CBF, CMRO2, or CMRglc approaching the contusion core. In general, there was a preserved ratio of CBF to CMRO2 in pericontusional hypodense GM. The OGR of the pericontusional hypodense GM was low (<4.0) and was inversely correlated (r=-0.68) with time after injury. A large proportion (%area: 22-76%) of pericontusional hypodense GM tissue had CMRO2 values less than 35 μmol/100 g/min, with this percentage increased with time after injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app