Add like
Add dislike
Add to saved papers

Sidenafil pre-treatment promotes decompression sickness in rats.

Vascular bubble formation after decompression contributes to endothelial injuries which form the basis for the development of decompression sickness (DCS). Nitric oxide (NO) is a powerful vasodilator that contributes to vessel homeostasis. It has been shown that NO-releasing agent may reduce bubble formation and prevent serious decompression sickness. The use of sildenafil, a well-known, phosphodiesterase-5 blocker, which act by potentiating the vasodilatory effect on smooth muscle relaxation, has never been studied in DCS. The purpose of the present study was to evaluate the clinical effects of sildenafil pre-treatment on DCS in a rat model. 67 rats were subjected to a simulated dive at 90 msw for 45 min before staged decompression. The experimental group received 10 mg/kg of sildenafil one hour before exposure (n = 35) while controls were not treated (n = 32). Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and the level of circulating bubbles in the right cavities was quantified. There were significantly more manifestations of DCS in the sildenafil group than in the controls (34.3% vs 6.25%, respectively, p = 0.012). Platelet count was more reduced in treated rats than in controls (-21.7% vs -7%, respectively, p = 0.029), whereas bubble grades did not differ between groups. We concluded that pre-treatment with sildenafil promotes the onset and severity of neurological DCS. When considering the use of phosphodiesterase-5 blockers in the context of diving, careful discussion with physician should be recommended.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app