Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of mTOR and HIF pathways diminishes chondro-osteogenesis and cell proliferation in chondroblastoma.

Chondroblastoma (CBL) is a benign bone tumor occurring mostly in teenagers. Despite this, CBL can recur and metastasize after curettage, which may impede normal epiphysis. In search of a novel targeted therapy for CBL, we aimed at BMP-2, a factor critical for chondro-osteogenesis and chondrocyte proliferation. Two pathways upstream of BMP-2, the mTOR and HIF, were targeted with rapamycin (Rapa) and FM19G11 (FM), respectively. Using immunohistochemistry, we found BMP-2 was highly expressed in CBL tissues. CBL cells explanted and confirmed with higher BMP-2 level than normal cartilage. Protumorigenic effect of Rapa and FM on CBL cells were transduced via BMP-2. Combination of Rapa and FM conferred stronger inhibition of cell proliferation than either monotherapy and inhibited levels of chondro-osteogenic markers (Sox9, aggrecan, and type II collagen). To minimize the adverse effect of Rapa, we performed screening in essential amino acids and found leucine deprivation-sensitized CBL cells to Rapa. Combination treatment of low dose Rapa, FM, and leucine deprivation conferred compatible inhibitory effects on CBL cell proliferation, chondro-osteogenic potential, and tumorigenic capacity. We conclude that targeting BMP-2 using mTOR/HIF inhibition could potently curb the disease. Addition of low-leucine diet could lower the dose of rapamycin in chase for less toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app