JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitochondrial function is impaired in yeast and human cellular models of Shwachman Diamond syndrome.

Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome typically characterized by neutropenia, exocrine pancreas dysfunction, metaphyseal chondrodysplasia, and predisposition to myelodysplastic syndrome and leukemia. SBDS, the gene affected in most cases of SDS, encodes a protein known to influence many cellular processes including ribosome biogenesis, mitotic spindle assembly, chemotaxis, and the regulation of reactive oxygen species production. The best characterized role for the SBDS protein is in the production of functional 60S ribosomal subunits. Given that a reduction in functional 60S subunits could impact on the translational output of cells depleted of SBDS we analyzed protein synthesis in yeast cells lacking SDO1, the ortholog of SBDS. Cells lacking SDO1 selectively increased the synthesis of POR1, the ortholog of mammalian VDAC1 a major anion channel of the mitochondrial outer membrane. Further studies revealed the cells lacking SDO1 were compromised in growth on non-fermentable carbon sources suggesting mitochondrial function was impaired. These observations prompted us to examine mitochondrial function in human cells where SBDS expression was reduced. Our studies indicate that reduced expression of SBDS decreases mitochondrial membrane potential and oxygen consumption and increases the production of reactive oxygen species. These studies indicate that mitochondrial function is also perturbed in cells expressing reduced amounts of SBDS and indicate that disruption of mitochondrial function may also contribute to SDS pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app