Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer.

Oncology Reports 2013 October
Since differential expression of microRNAs (miRNAs) has been found to be highly associated with several types of cancer, the goal of the present study was to identify an miRNA fingerprint as a non‑invasive diagnostic tool to detect urinary bladder cancer using the easily accessible samples of whole blood and urine. Blood and urine samples from 4 controls and from patients suffering from superficial and invasive bladder cancer were analyzed using miRNA microarray consisting of 754 human miRNAs from the Sanger database v14. Using RT‑qPCR technique, 6 of the differentially expressed miRNAs were validated in the controls (20 blood, 19 urine samples) and patients with superficial (18 blood, 16 urine samples) or invasive (20 blood and urine samples each) tumours. Three blood miRNAs (miR‑26b‑5p, miR‑144‑5p, miR‑374‑5p) were found to be significantly upregulated in invasive bladder tumour patients (P<0.05) when compared to the control group. The expression of 2 miRNAs (miR‑618, miR‑1255b‑5p) in the urine of patients with invasive tumours was significantly (P<0.05) increased in comparison to the control group. Blood miR‑26b‑5p detected the presence of invasive bladder tumours with 94% specificity and 65% sensitivity. The urine miR‑1255b‑5p reached 68% specificity and 85% sensitivity in the diagnosis of invasive tumours. This pilot study represents the first characterization of an miRNA profile for urinary bladder tumours in whole blood samples. In addition, it was shown that invasive bladder tumours could be identified by differentially expressed urine miRNAs. Further studies are needed to test the clinical usefulness for bladder cancer detection and surveillance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app