Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Blood oxygen level-dependent (BOLD) MRI analysis in atherosclerotic renal artery stenosis.

PURPOSE OF REVIEW: Blood oxygen level-dependent MRI (BOLD MRI) is a noninvasive technique for evaluating kidney tissue oxygenation that requires no contrast exposure, with the potential to allow functional assessment in patients with atherosclerotic renal artery stenosis. Normal cortical-to-medulla oxygenation gradients are preserved in many patients treated for several years with medical antihypertensive therapy without restoring renal blood flow. The current review is of particular interest as new methods have been applied to the analyses of BOLD MRI, opening the perspective of its wider utilization in clinical practice.

RECENT FINDINGS: Recent findings show that more severe vascular compromise ultimately overwhelms renal adaptive changes, leading to overt cortical hypoxia and expansion of medullary hypoxic zones. 'Fractional kidney hypoxia' method of analysis, developed as an alternative method of BOLD MRI analysis, avoids the assumption of discrete cortical and medullary values and decreases the bias related to operator selection of regions of interests.

SUMMARY: We believe that thoughtful application and analysis of BOLD MRI can provide critical insights into changes in renal function prior to the onset of irreversible renal injury and may identify patients most likely to gain from measures to reverse or repair disorders of tissue oxygenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app