Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice.

Transgenic mice expressing the mouse interleukin 33 (IL-33) gene driven by a keratin 14 promoter were generated. The skin-selective expression of the IL-33 gene was enhanced, and intense immunofluorescence for IL-33 was evident in the nuclei of the epidermis. Spontaneous itchy dermatitis developed in those mice at 6-8 wk of age in specific pathogen-free conditions. In the lesional skin, the epidermis was thickened and the eosinophils were infiltrated with increased expression of the eosinophil peroxidase and major basic protein genes. Mast cells were also abundant there, and blood histamine and total IgE levels were high. Those phenotypes closely resemble the features of atopic dermatitis. In peripheral blood and lesional skin, IL-5, IL-13, regulated upon activation, normally T-expressed, and presumably secreted (RANTES)/CCL5, and Eotaxin 1/CCL11 were increased, whereas TNF-α, IFN-γ, and thymic stromal lymphopoietin (TSLP) were unaltered. Furthermore, the proportion of group 2 innate lymphoid cells (ILC2s), which produce IL-5, were significantly increased in the lesional skin, peripheral blood, and regional lymph nodes. The dermatitis with eosinophil infiltration was improved by the administration of an anti-IL-5 antibody. These results suggest that the expression of IL-33 in the skin activates an immune response involving ILC2 and that this process might play a crucial role in the pathogenesis of allergic inflammation that is characteristic of atopic dermatitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app