JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adipose tissue-derived stem cells (ADSCs) transplantation promotes regeneration of expanded skin using a tissue expansion model.

Transplantation of adipose tissue-derived stem cells (ADSCs) is a promising method that has been used in regenerative medicine because it has shown the capacity to accelerate wound healing. However, roles of ADSCs transplantation in expanded-skin regeneration have remained unknown. To clarify the roles, a tissue expansion model was used in this study. The study comprised three groups of 13 rats in each group: the ADSCs group, the fibroblast (FB) group, and the control group. The skin regeneration in the ADSCs group was enhanced, as evidenced by increased cell proliferation and a higher hydroxyproline content and degree of neovascularization, all with p < 0.05, when compared with both the FB group and the control group. Consistent with enhanced cell proliferation and neovascularization, the regenerated skin in the ADSCs group was much thicker, which further reduced the retraction ratio of the expanded skin. Four weeks after operation, 5'-bromo-2'-deoxyuridine-labeled ADSCs appeared in subcutaneous tissue, vascular vessels, and hair follicles. The up-regulation of protein expression, such as epidermal growth factor and vascular endothelial growth factor, primarily emerged in the ADSC group, with the up-regulated basic fibroblast growth factor appearing in the FB group. Collectively, these results suggest that the transplantation of ADSCs could enhance the regeneration of expanded skin by participating in skin structures and up-regulating the secretion of epidermal growth factor and vascular endothelial growth factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app