JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute.

Burns 2014 August
INTRODUCTION: Tissue engineering has progressed in delivering laboratory-expanded keratinocytes to the clinic; however the production of a suitable alternative to a skin graft, containing both epidermis and dermis still remains a challenge.

AIM: To develop a one-step approach to wound reconstruction using finely minced split thickness skin and a biodegradable synthetic dermal substitute.

METHODS: This was explored in vitro using scalpel diced pieces of split thickness human skin combined with synthetic electrospun polylactide (PLA) scaffolds. To aid the spreading of tissue, 1% methylcellulose was used and platelet releasate was examined for its effect on cellular outgrowth from tissue explants. The outcome parameters included the metabolic activity of the migrating cells and their ability to produce collagen. Cell presence and migration on the scaffolds were assessed using fluorescence microscopy and SEM. Cells were identified as keratinocytes by immunostaining for pan-cytokeratin. Collagen deposition was quantified by using Sirius red.

RESULTS: Skin cells migrated along the fibers of the scaffold and formed new collagen. 1% methylcellulose improved the tissue handling properties of the minced skin. Platelet releasate did not stimulate the migration of skin cells along scaffold fibers. Immunohistochemistry and SEM confirmed the presence of both epithelial and stromal cells in the new tissue.

CONCLUSION: We describe the first key steps in the production of a skin substitute to be assembled in theatre eliminating the need for cell culture. Whilst further experiments are needed to develop this technique it can be a useful addition to armamentarium of the reconstructive surgeon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app