JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

5% CO₂ inhalation suppresses hyperventilation-induced absence seizures in children.

Epilepsy Research 2014 Februrary
Hyperventilation can cause respiratory alkalosis by exhaling CO2, and is often used to confirm diagnosis of absence epilepsy. CO2 has long been known for its anticonvulsant properties since the 1920s. In this pilot study, we aimed to determine whether inhaling medical carbogen containing 5% CO2 and 95% O2 can suppress hyperventilation-induced absence seizures and spike-and-wave discharges (SWDs). We examined 12 patients whose absence seizures were induced by hyperventilation using video electroencephalographic recording for at least 4h. The patients were asked to hyperventilate for 3 min while breathing the following gases: (1) room air (12 patients); (2) carbogen (12 patients); and (3) 100% O2 (8 patients). Eight out of twelve patients were also examined in room air through pretreatment with carbogen for 3 min before the 3 min hyperventilation. Compared with hyperventilation in room air, hyperventilation supplemented with 5% CO2 had the following effects: (a) decrease in the number and duration of seizures; (b) prolonged appearance of epileptic discharges; and (c) reduction in the number and duration of SWDs (P<0.001). However, pretreatment with 5% CO2 and 100% O2 supplement did not yield similar effects. We demonstrated that 5% CO2 could suppress hyperventilation-induced absence seizures and SWDs, supporting the claim that 5% CO2 is an effective anticonvulsant agent. Our pilot study provides clinical basis that 5% CO2 inhalation could be a therapeutic approach for hyperventilation-related seizures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app