Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Intracellular calcium concentration and growth hormone secretion in individual somatotropes: effects of growth hormone-releasing factor and somatostatin.

Endocrinology 1988 June
The cytosolic free calcium concentration and cumulative GH release were measured simultaneously in normal pituitary cells. This was made possible by a novel combination of fluorescence microscopy using the calcium indicator fura-2 and a reverse hemolytic plaque assay. GRF (10 nM) rapidly increased the intracellular free calcium concentration ([ Ca2+]i) from a basal level of 234 +/- 17 nM (mean +/- SE) to a peak value of 480 +/- 61 nM 1 min after stimulation. This GRF-induced calcium rise was totally abolished in calcium-free medium or in the presence of calcium channel blockers cobalt chloride (2 mM) and verapamil (100 microM). When somatostatin (SRIF; 1 nM) was added after basal recordings, cytosolic calcium decreased to 96 +/- 23 nM in identified somatotropes. [Ca2+]i returned to baseline upon the removal of SRIF inhibition. This rebound was higher when a sequential treatment of SRIF followed by GRF was applied. Exposing cells to a combination of GRF (10 nM) plus SRIF (1 nM) resulted in a decrease in [Ca2+]i identical to that caused by SRIF treatment alone. Despite the 10-fold excess of GRF, SRIF not only inhibited hormone secretion, but also totally overcame the GRF-induced rise of [Ca2+]i. In summary, stimulation by GRF increases cytosolic calcium in normal somatotropes. This increase is proposed to be due to the influx of calcium through membrane ion channels. In contrast, SRIF decreases [Ca2+]i. This might explain the cAMP-independent effects of this peptide. The effect of SRIF dominates over that of GRF with respect to both changes in [Ca2+]i and hormone release. Changes in the GH secretory rate are, therefore, accompanied by parallel changes in [Ca2+]i, both of which are primarily regulated by SRIF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app