Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of Goodpasture antigens in human alveolar basement membrane.

Goodpasture (GP) antigens, protein components reactive with human autoantibodies against glomerular basement membrane (GBM), were identified in human alveolar basement membrane (ABM) using an enzyme-linked immunoassay (ELISA), Western blotting and immunoprecipitation. All six anti-GBM antisera studied, three obtained from patients with glomerulonephritis and pulmonary haemorrhages (i.e. GP syndrome), and three from patients with glomerulonephritis alone, distinctively reacted with collagenase-digested (CD) ABM. Very cationic 22-28 kD and 40-48 kD components were detected by blot analysis combined with two-dimensional gel electrophoresis. These proteins showed some similarities to GP antigens in human GBM with respect to the monomer-dimer composition and charge distribution. Inhibition ELISA revealed that the binding of anti-GBM antisera to CDGBM decreased when they were pre-incubated with CDABM, suggesting that the anti-GBM antisera recognized the same epitope(s) on the GBM and ABM. Heterogeneity of the GP antigens in human ABM was demonstrated by blotting; monomeric antigens were absent or at low levels in the CDABM of three out of 10 normal individuals. In immunoprecipitation, anti-GBM antisera from patients with and without pulmonary haemorrhage showed different reactivities with CDABM. The former antisera precipitated both monomeric and dimeric components, but the latter did not. The observations of variation in monomer-dimer composition of ABM, and the different binding of anti-GBM antisera to it may explain why only some patients with anti-GBM nephritis have lung involvement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app