Journal Article
Research Support, Non-U.S. Gov't
Review
Systematic Review
Add like
Add dislike
Add to saved papers

Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review.

The literature exploring the utility of advanced echocardiographic techniques (such as deformation imaging) in the diagnosis and prognostication of patients receiving potentially cardiotoxic cancer therapy has involved relatively small trials in the research setting. In this systematic review of the current literature, we describe echocardiographic myocardial deformation parameters in 1,504 patients during or after cancer chemotherapy for 3 clinically-relevant scenarios. The systematic review was performed following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the EMBASE (1974 to November 2013) and MEDLINE (1946 to November 2013) databases. All studies of early myocardial changes with chemotherapy demonstrate that alterations of myocardial deformation precede significant change in left ventricular ejection fraction (LVEF). Using tissue Doppler-based strain imaging, peak systolic longitudinal strain rate has most consistently detected early myocardial changes during therapy, whereas with speckle tracking echocardiography (STE), peak systolic global longitudinal strain (GLS) appears to be the best measure. A 10% to 15% early reduction in GLS by STE during therapy appears to be the most useful parameter for the prediction of cardiotoxicity, defined as a drop in LVEF or heart failure. In late survivors of cancer, measures of global radial and circumferential strain are consistently abnormal, even in the context of normal LVEF, but their clinical value in predicting subsequent ventricular dysfunction or heart failure has not been explored. Thus, this systematic review confirms the value of echocardiographic myocardial deformation parameters for the early detection of myocardial changes and prediction of cardiotoxicity in patients receiving cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app