JOURNAL ARTICLE
MULTICENTER STUDY
Add like
Add dislike
Add to saved papers

Impact of initial FDG-PET/CT and serum-free light chain on transformation of conventionally defined solitary plasmacytoma to multiple myeloma.

PURPOSE: Solitary plasmacytoma (SP) is a localized proliferation of monoclonal plasma cells in either bone or soft tissue, without evidence of multiple myeloma (MM), and whose prognosis is marked by a high risk of transformation to MM.

EXPERIMENTAL DESIGN: We studied the impact of FDG-PET/CT (2[18F]fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography) on the risk of transformation of SP to overt MM among other markers in a series of 43 patients diagnosed with SP.

RESULTS: Median age was 57.5 years; 48% of patients had an abnormal involved serum-free light chain (sFLC) value, and 64% had an abnormal sFLC ratio at diagnosis. Thirty-three percent had two or more hypermetabolic lesions on initial PET/CT, and 20% had two or more focal lesions on initial MRI. With a median follow-up of 50 months, 14 patients transformed to MM with a median time (TTMM) of 71 months. The risk factors that significantly shortened TTMM at diagnosis were two or more hypermetabolic lesions on PET/CT, abnormal sFLC ratio and involved sFLC, and to a lesser extent at completion of treatment, absence of normalized involved sFLC and PET/CT or MRI. In a multivariate analysis, abnormal initial involved sFLC [OR = 10; 95% confidence interval (CI), 1-87; P = 0.008] and PET/CT (OR = 5; 95% CI, 0-9; P = 0.032) independently shortened TTMM.

CONCLUSIONS: An abnormal involved sFLC value and the presence of at least two hypermetabolic lesions on PET/CT at diagnosis of SP were the two predictors of early evolution to myeloma in our series. This data analysis will need confirmation in a larger study, and the study of these two risk factors may lead to a different management of patients with SP in the future. .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app