JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

What is the minimal radiation dose that can be used for detecting pleural effusion?

OBJECTIVE: The objective of our study was to assess the effect of radiation dose reduction on the detection of pleural effusions, thickening, and calcifications.

MATERIALS AND METHODS: Forty-five human cadavers (mean age at death, 60 ± 17 [SD] years; male-female ratio, 29:16; mean body mass index, 29 ± 5.7 [SD] kg/m(2)) were scanned at seven different dose levels (CT Dose Index volume [CTDIvol] = 20, 12, 10, 6, 4, 2, and 0.8 mGy) on a 128-MDCT unit (Definition FLASH). Images were reconstructed at a 3-mm slice thickness and 2-mm increment with filtered back projection (FBP) technique. Two chest radiologists independently reviewed all image series for the detection of pleural effusion, pleural calcification, and adjacent parenchymal opacification from atelectasis or consolidation. Objective image noise was measured at each dose level on the pleural effusion using ImageJ software. Data analysis was performed with the Student t test and kappa test.

RESULTS: Pleural effusions were seen in 39 of 45 cadavers on image series acquired at 2-20 mGy. Only 14 of 39 pleural effusions were identified at 0.8 mGy. Pleural effusions were not detected in 25 of 39 cadavers at 0.8 mGy because of photon starvation and increased image noise. Patient size was significantly larger in subjects with undetected pleural effusion than in those with detectable pleural effusion at 0.8 mGy (p < 0.01). Pleural calcifications and thickening (seen at 2-10 mGy images in three of three cadavers) were not identified on 0.8-mGy FBP images. On the other hand, adjacent parenchymal opacification could be assessed at all dose levels. The mean CT numbers of the pleural effusion were significantly lower on 0.8-mGy images than on images obtained at all other dose levels (-21 ± 55 [SD] vs 17.6 ± 19 HU, respectively) (p < 0.001).

CONCLUSION: Pleural effusions, thickening, and calcifications can be seen on FBP images reconstructed at a CTDIvol as low as 2 mGy (32-cm body phantom). CT at 0.8 mGy may provide suboptimal information on very small pleural effusions, pleural thickening, and calcifications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app